| Peer-Reviewed

Ideal Solar Cell Electrical Parameters and Ideality Factor Effect on the Efficiency

Received: 9 December 2022     Accepted: 14 February 2023     Published: 28 March 2023
Views:       Downloads:
Abstract

The determination of the electrical conversion efficiency (ηC) is particularly important to evaluate the performance of a solar cell. For the evaluation of the efficiency by considering the ideal solar cell characterized by an absence of parasitic resistances and using the characteristic equation which corresponds to the equivalent electrical diagram, we determine the electrical parameters such as: the saturation current density (J0), the short-circuit current density (Jsc), the open-circuit voltage (Voc), the maximum power density point (Jm, Vm) and the fill factor (FF). The saturation current density is determined using fundamental semiconductor notions. The effect of the ideality factor on the electrical efficiency and the various parameters is also highlited. The results are applied to heterostructures based on CuInS2 and CuInSe2. The performance of the cell increases with a raising of the ideality factor (η) for the ideal solar cell model. By varying the ideality factor from 1 to 3, the calculated efficiency varies theoretically from 8.4% to 25.3% under AM1.5 solar spectrum for the structure based on CdS(n)/CuInS2(p) named model (b) with a photocurrent density evaluated at 17 mA.cm-2 by numerical calculation method. The efficiency varies from 6.8% to 20.45% for the structure based on CdS(n)/CuInSe2(p) named model (a) with a photocurrent density evaluated at 31 mA.cm-2 for the same used parameters. The open-circuit voltage varies from 0.5 V to 1.5 V for model (b) and from 0.27 V to 0.8 V for model (a). The results obtained (efficiency and electrical parameters) for each model remain within the range of experimental values published in the literature for solar cells based on chalcopyrite materials such as CIGS (CuInxGa1-xSe2 or CuInxGa1-x(SySe1-y)2), and thus allowing to validate the different methods established to model the studied phenomena.

Published in International Journal of Energy and Power Engineering (Volume 12, Issue 1)
DOI 10.11648/j.ijepe.20231201.12
Page(s) 9-21
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2023. Published by Science Publishing Group

Keywords

Ideal Solar Cell, CuInS2 – CuInSe2, Electrical Parameters, Ideality Factor, Efficiency

References
[1] J.-P. Charles, G. Bordure, A. Khoury and P. Mialhe, “Consistency of the double exponential model with physical mechanisms of conduction for a solar cell under illumination” J. Phys. D: Appl. Phys., 18 (1985) 2261.
[2] S. R. Kodigala, Ph.D. Thesis, Sri Venkateswara University, Tirupati, 1992.
[3] M. R. AlRashidi, M. F. AlHajri, K. M. El-Naggar, A. K. Al-Othman, “A new estimation approach for determining the I–V characteristics of solar cells”, Solar Energy 85 (2011) 1543–1550 doi: 10.1016/j.solener.2011.04.013.
[4] X. Ma, S. Bader, B. Oelmann, “On the Performance of the Two-Diode Model for Photovoltaic Cells Under Indoor Artificial Lighting”, IEEE Access 9 (2020): 1350-1361.
[5] Safae AAZOU & El Mahdi ASSAID, “Modelling Real Photovoltaic Solar Cell Using Maple”, in: International Conference on Microelectronics - ICM, 2009 - ieeexplore.ieee.org DOI: 10.1109/ICM.2009.5418600.
[6] E. Assaid and M. El Aydi, “Exact Analytical Solutions of Diodes Bridge, Maple application center”, January 2007. Available online at the electronic address: http://www.maplesoft.com/applications/app_center_view.aspx?AID=2039.
[7] E. Assaid, E. Feddi and M. El Aydi, “Exact Analytical Expressions of Graëtz Bridge Currents and Voltages Using LambertW Function”, The 14th IEEE International Conference on Electronics, Circuits and Systems, Marrakech, Morocco, december 11-14, 2007.
[8] A. Orioli, A. D. Gangi, “A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data”, Appl Energy 2013; 102: 1160–77.
[9] W. Xiao, M. G. J. Lind, W. G. Dunford, A., Capel, “Real-time identification of optimal operating points in photovoltaic power systems”, IEEE Transactions on Industrial Electronics 53 (4), 1017–1026, 2006.
[10] Alireza Askarzadeh, Alireza Rezazadeh, “Artificial bee swarm optimization algorithm for parameters identification of solar cell models”, Applied Energy 102 (2013) 943–949.
[11] K Ishaque, Z Salam, S Mekhilef, A Shamsudin, “Parameter extraction of solar photovoltaic modules using penalty-based differential evolution”, Appl Energy 2012; 99: 297–308.
[12] L Sandrolini, M Artioli, U Reggiani, “Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis”. Appl Energy 2010; 87: 442–51.
[13] B Amrouche, A Guessoum, M Belhamel, “A simple behavioural model for solar module electric characteristics based on the first order system step response for MPPT study and comparison”, Appl Energy 2012; 91: 395–404.
[14] Jinlei Ding, Rakesh Radhakrishnan, “A newmethod to determine the optimum load of a real solar cell using the Lambert W-function”, Solar Energy Materials & Solar Cells 92 (2008) 1566–1569.
[15] R. M. Corless, G. H. Gonnet, DE. G. Hare, D. J. Jeffrey, D. E. Knuth, “On the Lambert W-Function”, Adv. Comput. Math, 5 (1996) 329.
[16] Adelmo Ortiz-Conde, Francisco J. Garcı´a Sa´nchez, Juan Muci, “New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics”, Solar Energy Materials and Solar Cells 90 (3), 352–361, 2006.
[17] DSH Chan, JCH Phang, Analytical methods for the extraction of solar-cell single-and double-diode model parameters from I–V characteristics. IEEE Transactions on Electron Devices 34 (2), 286–293. 1987.
[18] DSH Chan, JR Phillips, JCH Phang Chan, “A comparative study of extraction methods for solar cell model parameters”, Solid-State Electronics 29 (3), 329–337, 1986.
[19] A Jain, A Kapoor, “Exact analytical solutions of the parameters of real solar cells using Lambert W-function”, Solar Energy Materials and Solar Cells 81 (2), 269–277, 2004.
[20] H Saleem, S Karmalkar, “An analytical method to extract the physical parameters of a solar cell from four points on the illuminated J–V Curve”, IEEE Electron Device Letters 30 (4), 349–352, 2009.
[21] Joseph A Jervase, Hadj Bourdoucen and Ali Al-Lawati, “Solar cell parameter extraction using genetic algorithms”, Measurement Science and Technology 12 (11), 1922–1925, 2001.
[22] M Ye, X Wang, Y Xu, “Parameter extraction of solar cells using particle swarm optimization”, Journal of Applied Physics 105 (9), 094502–094508, 2009.
[23] T. Easwarakhanthan, J. Bottin, I. Bouhouch, C. Boutrit., “Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers”, Sol Energy 1986; 4: 1–12.
[24] M. Zagrouba, A. Sellami, M. Bouaïcha, M. Ksouri, “Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction”, Solar Energy 84 (5) (2010) 860 – 866.
[25] H. Wei, J. Cong, X. Lingyun, S. Deyun, “Extracting solar cell model parameters based on chaos particle swarm algorithm”, In: International conference on electric information and control engineering (ICEICE); 2011. p. 398–402.
[26] K. M. El-Naggar, M. R. AlRashidi, M. F. AlHajri, A. K. Al-Othman, “Simulated annealing algorithm for photovoltaic parameters identification”, Sol Energy 2012; 86: 266–74.
[27] C. Dai, W. Chen, Y. Zhu, “Seeker optimization algorithm for digital IIR filter design”, IEEE Trans Ind Electron 2010; 57: 1710–8.
[28] T. Enzenhofer, T. Unold, R. Scheer, H.-W. Schock, 20th European Photovoltaic Solar Energy Conference, Barcelona, (2005), p. 1751.
[29] S. Taunier, J. S. Kurdi, P. P. Grand, A. Chomont, O. Ramdani, L. Parissi, P. Panheleux, N. Naghavi, C. Hubert, M. B. Farah, J. P. Fauvarque, J. Connolly, O. Roussel, P. Mogensen, E. Mahe, J. F. Guillemoles, D. Lincot, O. Kerrec, “Cu(In,Ga)(S,Se)2 solar cells and modules by electrodeposition” Thin Solid Films 480–481 (2005) 526.
[30] H. Du, C. H. Champness, I. Shih, “Results on monocrystalline CuInSe2 solar cells”, Thin Solid Films 480–481 (2005) 37.
[31] M. Kauk, M. Altosaar, J. Raudoja, A. Jagomagi, M. Danilson, T. Varema, “The performance of CuInSe2 monograin layer solar cells with variable indium content”, Thin Solid Films 515 (2007) 5880.
[32] L. Stolt, J. Hedstrom, J. Kessler, M. Ruckh, K.-O. Velthaus, H.-W. Schock, “ZnO/CdS/CuInSe2 thin-film solar cells with improved performance”, Appl. Phys. Lett. 62 (1993) 597.
[33] J. A. M. AbuShama, S. Johnston, T. Moriarty, G. Teeter, K. Ramanathan, R. Noufi, “ Properties of ZnO/CdS/ CuInSe2 solar cells with improved performance”, Progress in Photovoltaics: Research and Applications 12 (2004) 39.
[34] J. Hedstrom, H. Ohlsen, M. Bodegard, A. Kylner, L. Stolt, D. Hariskos, M. Ruck, H. W. Schock, Proceedings of 23rd IEEE Photovoltaic Specialists Conference, (1993), p. 364.
[35] S. H. Wei, S. B. Zhang, and A. Zunger, “Effects of Ga Addition to CuInSe2 on its Electronic, Structural, and Defect Properties”, Applied Physics Letters 72 (1998) 3199-3201. https://doi.org/10.1063/1.121548.
[36] C. H. Huang, “Effects of Ga Content on Cu(In,Ga)Se2 Solar Cells Studied by Numerical Modelling”, Journal of Physics and Chemistry of Solids 69 (2008) 330-334. https://doi.org/10.1016/j.jpcs.2007.07.093.
[37] M. Gloeckler, and J. R. Sites, “Band-gap grading in Cu (In, Ga)Se2 solar cells”, Journal of Physics and Chemistry of Solids 66 (2005) 1891-1894. https://doi.org/10.1016/j.jpcs.2005.09.087.
[38] Abdelhakim Mahdjoub and Lazhar Hadjeris, “Reflection loss minimization for a ZnO/CdS/CuInSe2 photovoltaic cell” Semiconductor Physics, Quantum Electronics & Optoelectronics, 2013. V. 16, N 4. P. 379-381.
[39] T. M. Razykov, C. S. Ferekides, D. Morel, E. Stefanakos, H. S. Ullal, H. M. Upadhyaya, ‘Solar energy, Solar photovoltaic electricity: Current status and future prospects”, Solar Energy, 85 (8), p. 1580-1608 (2011).
[40] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor”, Progr. Photovolt.: Res. Appl. 16 (3), p. 235-239 (2008).
[41] A. Gerthoffer, F. Roux, F. Emieux, P. Faucherand, H. Fournier, L. Grenet, S. Perraud, “CIGS solar cells on flexible ultra-thin glass substrates: Characterization and bending test”, Thin Solid Films 592 (2015): 99-104.
[42] A. Luque and S. Hegedus (eds), Handbook of Photovoltaic Science and Engineering, 1st Ed, John Wiley & Sons Ltd, England, 2003. https://doi.org/10.1002/0470014008.
[43] I. Repins, M. A. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, and J. Schar, “Characterization of 19.9% efficient CIGS absorbers”, 33rd IEEE Photovoltaic Specialists Conference, San Diego, California, (2008) 1–6. https://doi.org/10.1109/PVSC.2008. 4922628.
[44] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, “Effects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%”, physica status solidi (RRL)–Rapid Research Letters 10 (2016) 583-586. https://doi.org/10.1002/pssr.201600199.
[45] G. Hanna, A. Jasenek, U. Rau, and H. W. Schock, “Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2”, Thin Solid Films 387 (2001) 71-73. https://doi.org/10.1016/S0040-6090(00)01710-7.
[46] S. H. Song, K. Nagaich, E. S. Aydil, R. Feist, R. Haley, and S. A. Campbell, “Structure optimization for a high efficiency CIGS solar cell”, 35th IEEE Photovoltaic Specialists Conference, IEEE (2010) 002488-002492. https://doi.org/10.1109/PVSC.2010.5614724.
[47] M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and A. W. Ho-Baillie, “Solar cell efficiency tables (Version 53)”, Progress in Photovoltaics: Research and Applications 27 (2019) 3–12. https://doi.org/10.1002/pip.3102.
[48] T. Kato, “Cu(In,Ga)(Se,S)2 solar cell research in Solar Frontier”, Progress and current status, Japanese Journal of Applied Physics 56 (2017) 04CA02. https://doi.org/10.7567/JJAP.56.04CA02.
[49] H. S. Ullal, K. Zwelbel, and B. Von Roedern, “Current status of polycrystalline thin-film PV technologies”, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference – 1997, IEEE (1997) 301-305. https://doi.org/10.1109/PVSC.1997.654089.
[50] S. Ishizuka, A. Yamada, P. Fons, and S. Niki, “Flexible Cu(In,Ga)Se2 solar cells fabricated using alkali-silicate glass thin layers as an alkali source material”, Journal of Renewable Sustainable Energy 1 (2009) 013102. https://doi.org/10.1063/1.3005376.
[51] A. Chirilă, S. Buecheler, F. Pianezzi, F. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, S. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In, Ga)Se2 solar cells grown on flexible polymer films”, Nature Materials 10 (2011) 857–861. https://doi.org/10.1038/NMAT3122.
[52] M. Yamaguchi, “Radiation resistance of compound semiconductor solar cells”, Journal of applied physics 78 (1995) 1476 - 1480. https://doi.org/10.1063/1.360236.
[53] L. L. Kazmerski, M. Hallerdt, P. J. Ireland, R. A. Mickelsen, and W. S. Chen, “Optical properties and grain boundary effects in CuInSe2”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1 (1983) 395-398. https://doi.org/10.1116/1.571928.
[54] S. M. Sze, “Physics of Semiconductor Devices”, Wiley (1981), 51.
[55] Henry Mathieu, Cours, “Physique des Semiconducteurs et des Composants Électroniques”, 2001, 5e édition, DUNOD, p. 124; 137.
[56] El Hadji Mamadou Keita, Abdoul Aziz Correa, Issa Faye, Chamsdine Sow, Cheikh Sene, Babacar Mbow. Short-Circuit Photocurrent Density Determination of Chalcopyrite Solar Cells and Study of Basic Parameters Under AM0, AM1, AM1. 5 Spectra. Science Journal of Energy Engineering. Vol. 9, No. 4, 2021, pp. 79-89. doi: 10.11648/j.sjee.20210904.15.
[57] El Hadji Mamadou Keita, Fallou Mbaye, Bachirou Ndiaye, Chamsdine Sow, Cheikh Sene, Babacar Mbow. Optimizing Structures Based on Chalcopyrite Materials for Photovoltaic Applications. American Journal of Energy Engineering. Vol. 10, No. 3, 2022, pp. 53-67. doi: 10.11648/j.ajee.20221003.11.
[58] Alain Ricaud, “Photopiles Solaires”, De la physique de la conversion photovoltaïque aux filières, matériaux et procédés. 1997, 1e édition, Presses polytechniques et universitaires romandes, p. 40.
[59] E. M. Keita, B. Mbow, C. Sene, ‘' Perovskites and other framework structure crystalline materials”, chap No 22: Framework structure materials in photovoltaics based on perovskites 3D”, OAJ Materials and Devices, vol 5 (2), (Coll. Acad. 2021), p. 637-708. DOI: 10.23647/ca.md20201511.
[60] Babacar MBOW, Doctoral Thesis, “Etude des Réponses Spectrales dans le proche Infra-Rouge des Composés Mixtes III-V, Ternaires et Quaternaires, à Base de GaSb et de leurs Dérivés”, Université Montpellier II (1992) (p. 45-46; 52-55).
[61] Michelle Schatzman, Cours et Exercices, Analyse Numérique, “Une Approche Mathématique”, 2001, 2e édition, DUNOD, p. 211.
[62] P. J. Dale, A. P. Samantilleke, G. Zoppi, I. Forbes, L. M. Peter, “Characterization of CuInSe2 material and devices: comparison of thermal and electrochemically prepared absorber layers”, J. Phys. D: Appl. Phys. 41 (2008) 085105.
[63] R. A. Mickelsen, W. S. Chen, “High photocurrent polycrystalline thin-film CdS/CuInSe2 solar cella “, Appl. Phys. Lett. 36 (1980) 371.
[64] R. Scheer, T. Walter, H. W. Schock, M. L. Fearheiley, H. J. Lewerenz,”CuInS2 based thin film solar cell with 10.2% efficiency”, Appl. Phys. Lett. 63 (1993) 3294.
[65] Subba Ramaiah Kodigala, “Cu(In1-xGax)Se2 based thin solar cells”, 2010, Volume 35, Academic Press, ELSEVIER. Inc.
[66] M. A. Green, “Tracking solar cell conversion efficiency”, Nat Rev Phys 2, 172–173 (2020). https://doi.org/10.1038/s42254-020-0163-y.
Cite This Article
  • APA Style

    El Hadji Mamadou Keita, Fallou Mbaye, Abdoul Aziz Correa, Mamadou Dia, Cheikh Sene, et al. (2023). Ideal Solar Cell Electrical Parameters and Ideality Factor Effect on the Efficiency. International Journal of Energy and Power Engineering, 12(1), 9-21. https://doi.org/10.11648/j.ijepe.20231201.12

    Copy | Download

    ACS Style

    El Hadji Mamadou Keita; Fallou Mbaye; Abdoul Aziz Correa; Mamadou Dia; Cheikh Sene, et al. Ideal Solar Cell Electrical Parameters and Ideality Factor Effect on the Efficiency. Int. J. Energy Power Eng. 2023, 12(1), 9-21. doi: 10.11648/j.ijepe.20231201.12

    Copy | Download

    AMA Style

    El Hadji Mamadou Keita, Fallou Mbaye, Abdoul Aziz Correa, Mamadou Dia, Cheikh Sene, et al. Ideal Solar Cell Electrical Parameters and Ideality Factor Effect on the Efficiency. Int J Energy Power Eng. 2023;12(1):9-21. doi: 10.11648/j.ijepe.20231201.12

    Copy | Download

  • @article{10.11648/j.ijepe.20231201.12,
      author = {El Hadji Mamadou Keita and Fallou Mbaye and Abdoul Aziz Correa and Mamadou Dia and Cheikh Sene and Babacar Mbow},
      title = {Ideal Solar Cell Electrical Parameters and Ideality Factor Effect on the Efficiency},
      journal = {International Journal of Energy and Power Engineering},
      volume = {12},
      number = {1},
      pages = {9-21},
      doi = {10.11648/j.ijepe.20231201.12},
      url = {https://doi.org/10.11648/j.ijepe.20231201.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijepe.20231201.12},
      abstract = {The determination of the electrical conversion efficiency (ηC) is particularly important to evaluate the performance of a solar cell. For the evaluation of the efficiency by considering the ideal solar cell characterized by an absence of parasitic resistances and using the characteristic equation which corresponds to the equivalent electrical diagram, we determine the electrical parameters such as: the saturation current density (J0), the short-circuit current density (Jsc), the open-circuit voltage (Voc), the maximum power density point (Jm, Vm) and the fill factor (FF). The saturation current density is determined using fundamental semiconductor notions. The effect of the ideality factor on the electrical efficiency and the various parameters is also highlited. The results are applied to heterostructures based on CuInS2 and CuInSe2. The performance of the cell increases with a raising of the ideality factor (η) for the ideal solar cell model. By varying the ideality factor from 1 to 3, the calculated efficiency varies theoretically from 8.4% to 25.3% under AM1.5 solar spectrum for the structure based on CdS(n)/CuInS2(p) named model (b) with a photocurrent density evaluated at 17 mA.cm-2 by numerical calculation method. The efficiency varies from 6.8% to 20.45% for the structure based on CdS(n)/CuInSe2(p) named model (a) with a photocurrent density evaluated at 31 mA.cm-2 for the same used parameters. The open-circuit voltage varies from 0.5 V to 1.5 V for model (b) and from 0.27 V to 0.8 V for model (a). The results obtained (efficiency and electrical parameters) for each model remain within the range of experimental values published in the literature for solar cells based on chalcopyrite materials such as CIGS (CuInxGa1-xSe2 or CuInxGa1-x(SySe1-y)2), and thus allowing to validate the different methods established to model the studied phenomena.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Ideal Solar Cell Electrical Parameters and Ideality Factor Effect on the Efficiency
    AU  - El Hadji Mamadou Keita
    AU  - Fallou Mbaye
    AU  - Abdoul Aziz Correa
    AU  - Mamadou Dia
    AU  - Cheikh Sene
    AU  - Babacar Mbow
    Y1  - 2023/03/28
    PY  - 2023
    N1  - https://doi.org/10.11648/j.ijepe.20231201.12
    DO  - 10.11648/j.ijepe.20231201.12
    T2  - International Journal of Energy and Power Engineering
    JF  - International Journal of Energy and Power Engineering
    JO  - International Journal of Energy and Power Engineering
    SP  - 9
    EP  - 21
    PB  - Science Publishing Group
    SN  - 2326-960X
    UR  - https://doi.org/10.11648/j.ijepe.20231201.12
    AB  - The determination of the electrical conversion efficiency (ηC) is particularly important to evaluate the performance of a solar cell. For the evaluation of the efficiency by considering the ideal solar cell characterized by an absence of parasitic resistances and using the characteristic equation which corresponds to the equivalent electrical diagram, we determine the electrical parameters such as: the saturation current density (J0), the short-circuit current density (Jsc), the open-circuit voltage (Voc), the maximum power density point (Jm, Vm) and the fill factor (FF). The saturation current density is determined using fundamental semiconductor notions. The effect of the ideality factor on the electrical efficiency and the various parameters is also highlited. The results are applied to heterostructures based on CuInS2 and CuInSe2. The performance of the cell increases with a raising of the ideality factor (η) for the ideal solar cell model. By varying the ideality factor from 1 to 3, the calculated efficiency varies theoretically from 8.4% to 25.3% under AM1.5 solar spectrum for the structure based on CdS(n)/CuInS2(p) named model (b) with a photocurrent density evaluated at 17 mA.cm-2 by numerical calculation method. The efficiency varies from 6.8% to 20.45% for the structure based on CdS(n)/CuInSe2(p) named model (a) with a photocurrent density evaluated at 31 mA.cm-2 for the same used parameters. The open-circuit voltage varies from 0.5 V to 1.5 V for model (b) and from 0.27 V to 0.8 V for model (a). The results obtained (efficiency and electrical parameters) for each model remain within the range of experimental values published in the literature for solar cells based on chalcopyrite materials such as CIGS (CuInxGa1-xSe2 or CuInxGa1-x(SySe1-y)2), and thus allowing to validate the different methods established to model the studied phenomena.
    VL  - 12
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Laboratory of Semiconductors and Solar Energy, Physics Department, Faculty of Science and Technology, University Cheikh Anta Diop, Dakar, Senegal

  • Laboratory of Semiconductors and Solar Energy, Physics Department, Faculty of Science and Technology, University Cheikh Anta Diop, Dakar, Senegal

  • Laboratory of Semiconductors and Solar Energy, Physics Department, Faculty of Science and Technology, University Cheikh Anta Diop, Dakar, Senegal

  • Laboratory of Semiconductors and Solar Energy, Physics Department, Faculty of Science and Technology, University Cheikh Anta Diop, Dakar, Senegal

  • Laboratory of Semiconductors and Solar Energy, Physics Department, Faculty of Science and Technology, University Cheikh Anta Diop, Dakar, Senegal

  • Laboratory of Semiconductors and Solar Energy, Physics Department, Faculty of Science and Technology, University Cheikh Anta Diop, Dakar, Senegal

  • Sections